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S1. Introduction

" Recently. Deuschel4i has obtained a fluctuation result for a system of

lattice valued diffusion processes. The result obtained is similar to the ones

for mean-field interacting particle diffusions treated in a number of papers

-f23.L4 23].-"In another direction. Kallianpur and Wolpert(11] have

introduced a class of stochastic differential equations (SDE's) governing

nuclear space valued processes as a model for voltage potentials for spatially

extended neurons. -The present paper is motivated by both the above problems.

especially, the problem of interacting systems of neurons. The techniques

developed in this paper enable us to prove a general result which yields a

central limit theorem for such systems. It also provides another approach to

the fluctuation theorem in"[4],, -In addition, the identification problem of the

limit measures leads us to discuss the uniqueness of weak solutions of the SDE

formally expressed by

dX(t) = dW(t) + L*(t)X(t)dt.

A precise meaning to the above equation is given by equation (1.1) below. p

Our aim is to find a suitable space E of smooth functionals on the dual

nuclear space E' and to solve the SDE on the dual space Si.. which is

appropriate for the central limit theorems we have in mind.

We will proceed to explain the setting: A stochastic process XF(t)

defined on a complete probability space (f7.5.P) indexed by elements in 9E is

called an Y(IDE)-process if XF(t) is a real stochastic process for any fixed

F C N, and X dF+ (t) = aX,(t) + PXG(t) almost surely for each real numbers aJ3

and elements of FG C SE, and further EEXf(t) 2] is continuous with respect to F

on . [10]. XF(t) is called continuous if lim E[(XF(t)-XF(s))2J = 0 for each
t-4s

F E SE.. Let WF(t) be an g(IE.)-Wiener process, i.e. such that for any fixed

oz N



2

F C IE'" WF(t) is a real continuous Gaussian additive process with mean 0.

We will prove that a unique continuous !(2E)-process solution XF(t)

exists for the following equation with given initial value XF(O):

(1.1) dXF(t) = dWF(t) + XL(t)F(t)dt.

Roughly speaking, if L(t) generates the strongly continuous Kolmogorov

evolution operator U(t,s) from ME. into itself, the unique solution for (1.1)

can be given as follows:

XF(t) = XU(tO)F(O) + WF(t) + J1 WL(s)U(t)s}F(ds.

We will now begin by giving the precise definitions of the operator L(t)

and the space N." Let E be a nuclear Frichet space whose topology is defined

by an increasing sequence of Hilbertian semi-norms 11111 1I1.112...g111 p --

As usual let E' be the dual space. E the completion of E by the p-th semi-norm
p

11-11 and E' the dual space of E . Then we have
p p p

0 09

E =fnE and E' =UE'.p-0 P p--0 P

Let K be a separable Hilbert space with norm 1-1IK and F a mapping from E'

into K. Then F is said to be E'-Fr6chet differentiable if for every x C E'. wep '

have a bounded linear operator 9 F(x) from E' into K such that
p P

11 t = F(x)(h). h a E' in K.
t-10O p p

Suppose that F is V-FrAchet differentiable for every integer p 0 0. Then

taking E = U E and the strong topology of V. (which is equivalent to the

inductive limit topology of E*; p=O.1.2.---), into account, we have a
p

continuous linear operator DF(x) from E' equipped with the strong topology into

S4 "
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K such that for any integer p 0. DF(x)(h) = T F(x).(h) for h C E. Hence. if

F is n-times E'-Frfchet differentiable for every integer p 0, we have a
p

continuous n-linear operator DnF(x) from E'xE'x...xE. into K such that the
n-times

restriction of DnF(x) on E'xE'x...xE' = the n-th E'-Fr6chet derivative nF(x).
P P p p
n-timeS

Then if F is infinitely many times E'-Fr6chet differentiable for every integer
p

p 0. the Hilbert-Schmidt norm

is initforll each F(x)(hi). he'). *.,h~~p)I) 1 "2
H.S'. 1n=1 "I 1 2 o K

is finite for each integer n 1 and p 0 0. where (h~p )) is a C.O.N.S..

(complete orthonormal system), in E' (14].
p

From now on, we will often use the conventional notation such that

1D °0FJ x),X(J ) = IF (x )II. 7
I.S. K*

Let 1 (t) be the standard E'-Wiener process such that for any f C E.

<P(t),f> is a 1-dimensional Brownian motion, with variance

E[(((t).E>2 = tllllo0, where <x.E>. (x C E', f C E). denotes the canonical

bilinear form on E' x E.

Without loss of generality, we assume P(t) is an Ei-valued Wiener process

throughout this paper. [17]. [18]. I.,

Definition of L(t). For t ) 0 and x C E', let A(tx) and B(t. *) be

continuous mappings from E' into itself such that the following conditions are

satisfied.

(Hl) There exists a natural number p0 such that A(t,x) maps Ei into E.

B(t.o) maps E' into E' and for each T > 0.
PO

r
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sup, I A(t.x) 12 < co and sup IIB(t.x)II <

O~tKT O~t T

where 11-11 denotes the dual norm of E' and I A(t.x) 12 11~IA(t .x)h(O) 112

-p p 2 J=1 J -p0

(H2) A(t.x) and B(t~x) are Infinitely many times E-Fr~chet differentiable for
p

every integer p 0 such that for any T > 0 and any integer n 1

sup IIDP(t.,C)II(P) < and sup 11n~~)1P <
xCE HS xEE' H.S.

g 0 t T 0 t T

where I~,Ip I )1 I 2  and
HS ill 2..,j n=1 1 2 n

11D nB(t.x)Ill~ ( 1IDnB~t.x)(h(P).h~p),....h(p)) 112  ) 1/2
H.S till 2... n=1 1 1 12 i n _O

(H3) For any integer n 2 0 and any T > 0. there exist X(n,PT) > 0 and

Nl(n.p.T) > 0 such that

sup max(IIDkA(t x)-DkA(sx),(p) IDkB(tx) - DkB(s.x)IIs

Then for any twice EV-Fr6chet differentiable real valued functional F on E' for
p

every p 0. we put

(L(t)F)(x) = Itrace ED2F(x) o [A(t.x) x A(t,x)) + DF(x)(B(t~x)),

where trace ED 2 F(x) o EA(t.x) x A(t.x)) D2=)AtxhO)AtxhO)

Definition of . For a real valued infinitely many times E'-Fr~chet
ME" p

differentiable functional F on E' for every integer p O, we define the

* following semi-norms:
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p.q.n k--O pk

where p 0. q 0 and n 0 are integers and
-lxl

IIFII ( q ) = sup e -~11PlIDkF(x)I11( q )

p,k xEE' H.S.

p

For any natural number n, define

S(O n ) = = h(x)f(z); (6n),.

where p(m) Is an element of the Schwartz space Y(IRn ) of rapidly decreasing

eC-functions on the n-dimensional Euclidean space 0n and h(z),

=(X lx 2 ..... n), is a weight function such that h(x) = 1/g(z).

n
g()= I go(x). go(x) = expC-v4$fylp(xi-y)dy) and p(z) is the Friedrichs

mollifier whose support is contained in [-1.1]. Let J=1.2....} be a

countable dense subset of E. Define

C.n(E') = {0(x)=(<x.P. >. <x.2>.'..xn>); e S(O))

and introduce the nuclear Fr&chet topology on this space by the countably many

semi-norms;

11011 = sup (+ll)pl( pO.l.

O Mp

d dk ak
where ( )= .k kk Then we have a fundamental space=kk k kc

a1

spaces '(E').CO.n

For any integers p 0. q 0 and n 0, let ® be the completion ofp~q.n

Co(E') by the semi-norm 11-.11 We define sE , = w n and introduce a
0 p.q.n p.q.n pq.n

% % P
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topology on TE. by the countably many semi-norms 1111 *p~qn, p O, q O and n O.

Then M, becomes a complete separable metric space [6].

Remark 1. The definition of is independent of the way of choosing a

countable dense subset of E. We call a real valued functional expressed as

O(x) = *(<X. l>,<x.!2>,**-.<x'En>) by using some natural number n, Ei a E.

i=1,2.-*.n, and * a S(O) a weighted Schwartz functional. Let 5 be the set of

all weighted Schwartz functionals, 0 the completion of ! by II-II andp~q~n p.q.n

S= fl where p 0. q O 0 and n 0 are Integers. Then
p.qn p.q.n

Proof. It is enough to show that 0(x) = 0(<X.<XlE2> ....<X.Em> ).

e E, * e S(Um) e 9p q n" By the nuclearity of E. we have a natural number

r > max {p.q) such that

(1.2) 1 r (q)12 <
J=1 J -r

and since { } is dense in E. for each i. there exists a sequence i,k '

kk F {_) such that

(1,3) lim IE 1 - kt kllr = 0.
k-Fi

On the other hand, Dn (x)(h( ) ' h(q)."' h(q)) is a finite sum of terms;
I1 2 n

n(1.4) a(<x,>, x,f2> •,--,<X, >)<h (q )  >n1  n2  n 2 m)'m>CI 2•...axm
x1  x2 *.Om

<h(q) E>..<h (q) f ><h(q) h<) h(q)

(2  (2 (2
2(l n 1 1 2n2

*1 00. 1 j P. J N 4.
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() ... <h(q) (q )

2 n

where nl+n 2+*"+nm - n. Since

0 h~z) C~exp 1 N/ 1 xil

O. 1 2 .. e=1

Noticing O(z) = h(z)f(z). f a 9(90) we have

(1.6) sup sup e - x *((xnl1 n2( n ' a'

nC 2. <x.f2 -- xfmI )
k xE . I n ' '

x n , n l l n i~ h i + n(x k > @ ( < X lkk 'm .k' " "

p + 1 n .. 8x2

'''°xi I X i+l m

. <x. i k> + T(<X.fI> - <X, ik>). <Xf 1+1> <.-<f < M>)*

xlxtlI. OKIT . l=l.2.--.m} C2.

Setting .(k)(x)-(x1.k>. 2.k .. (x.k) and using (1.2) - (1.6).

we have

11 IM - ,(k)ll = 0.k.. m p~q,n

which completes the proof.

Here and in the sequel, we denote positive constants by CI or. if

necessary, by Cl(TI.T2.*..) . i=1.2,-,., in case they depend on the parameters

T *T2 *

V 00 0- 0 V~ ~ . . .'

%1



., j,, . . . . . . . . -.. .. , . i,.. . - 4 - S

Before proceeding to the discussion of equation (1.1). the following

remarks on the g(DlE.)-Wiener process are in order. Taking the continuity of

WF(t) and E[WF(t) 2] with respect to the parameters t and F into account, we
note that sup E[WF(t)2 ] < a and sup E[W F(t)2 ] is lower semi-continuous on

O~tKT O~tKT

SE' - Since is a complete metric space, by the Banach-Steinhaus theorem we

have some positive integers p,.ql and m1 such that

(1.7) sup E[WF(t)2 ] 2 C3 (T)IIFII
2

O~t T F1) ',ql,ml"

Now given a functional Vt(F ) such that for each t it is a positive

definite quadratic form on M. x 5E". increasing and continuous in t and
sup V(M ) K CF(T)IIFII2 for some natural numbers p. q and n. we can
OstT pq.n

construct a 11E,-indexed Gaussian mean-zero continuous process WF(t) with

independent increments and variance Vt(F) by the Kolmogorov theorem, since

VtAs(F) is positive definite quadratic form with respect to (t.F). t C [0.).

F e fE. Here t A s = min {t.s}.

." S2. Existence and Uniqueness of solutions of the SDE

Let T s.t(x) be a solution of the following stochastic differential

equation:

1st(x)= x + Js A(r. Ts (x))d3(r) + .ftB(r' s (x))dr.

where P(t) is the standard E'-Wiener process. By the assumptions (Hl) and

(H2). if p p0 and x 6 E', then the solution of the above equation is uniquely

* obtained by the usual method of successive approximations in E'.
p

We will assume the following condition:

(H4) (L(t)F)(x) and (U(t,s)F)(x) = E[F(s.;t(x))] EC . if F C E

Let WF(t) , F C WE' be the V(TE.)-Wiener process and L(t) the diffusion

%



6 9

operator defined above. Then we will prove

Proposition 1. Under the assumptions (Hl)-(H4) the continuous T(5E .)-process

solution of (1.1) such that for some O(a(1, E[IXF(o)12+a] < - Is uniquely given

as follows:

XF(t) = XU(tO)F(O) + WF(t) + foWL(s)U~t.s)FS)ds.

Proof. Under the assumptions (Hl)-(H4), L(t) is a continuous linear

operator from !E. into itself. We use the following lemrra which will be proved

later.

Lemma 1. Suppose that the conditions (Hl)-(H4) hold. Then L(t) generates

the Kolmogorov evolution operator U(t,s) :rom iE into itself such that

(1) U(t.s) is a continuous linear operator from SE' into itslef,

(2) for any F C WE.. U(t.s)F is continuous from ((t.s); O s~t) into 9E"

(3) U(tt) = U(s,s) = identity operator,

(4) !L U(t,s)F = U(t.s)L(t)F. 0 9 s 9 t on ME.

(5) U(t.s)F = -L(s)U(t.s)F. O9s~t, tO on

Further for any integers p Po. q O. n O. J~l and any TO and F C TE" we have
04

(2.1) ,,U(.'.s')F - U(t.s)FI 2 C (T.F.p.q.n){lt-t' I + Is-s'l }.
p.q~n 5

0 st,s'.t' g T.

First we will verify that the integral in Proposition 1 is well defined by

showing that for any fixed F C TE" W L(s)U(ts)F(S) is continuous in (t,s).

Since WF(t) is a Gaussian additive process with mean 0 and variance Vt(F). we

get for any integer n 1,

oN

1i

I "C...) ,,:,....-:-, ,,,,,..,,+.,, , ,.,, ,- ,, ...... , .. . . ... .,,..o,:.
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(2.2) E[IWF(t) - WF(t2)I'
n ] C6 (T)(Vt (F)-Vt2 (F)) n . 0 t 1 .t 2 K T.

We choose an integer k 4 such that 2kX(m,ql.T) > 2. where m and ql are the

numbers which appeared in (1.7) and X(m,.q,.T) is the number in (3). For

0 K s.t.s',t* K T. the inequalities (2.1) and (2.2) yield, together with (H3).

(2.3) E(IWL(s) U(t.s)F(S') - WL(sU(t.s)F(s)J2k]

K C 7(T)(Vs .(L(s)U(ts)F) - Vs(L~s)ut s)F ))

and

(2.4) EEIWL(s,)U(t,.s,)F(s)-WL(s)Uts)F(s')I I

K Cs(T)IIL s ')U(t ',s')F - L(s)U(ts)Fll
2k
pl.ql. .m

C9 (T){IIU(t.s')F - UtsF12k +IUt,)F-U(t.s)FtI 2k
p,q.ml+1 p1.q1.m1+2

+ Is._sl2kX(m1,q.T) )

Clo(T){It-t'Ik + ls sl k  + Is,-sl 2 k,\(m,.q ,T) .

The inequalities (2.3) and (2.4) are sufficient for the Kolmogorov-Totoki

criterion [25] for continuity in (t,s). The continuity of WL(s)U(t~s)L(t)F(s)

in (t.s) can be proved similarly.

Now we proceed to the proof of the existence of solutions for (1.1).

Taking the relation U(t.s)F = F + fU(T.s)L(T)FdT, the continuity of

WL(s)U(T.s)L(TsF(s) in T. the linearity of W.(s) and the L2-continuity of

W.(s). into account, we have

WL~sSU~t.sSFCS) = WL(S)F(S) + W (s ) (S)

* = WL(s)F(s) + JsWL(s)U(TsSL()F(s)dT,

[ :9.



so that by making use of the continuity of W L(s)UrsL(TF(s) in (T.s) again,

we get

(2.5) 0L(s)U(t.s)F( sJAs

t JOY~~sJLs t tO~ WU(rLr)S)dT)ds

= JfWLUsF(sd + fO('sWL(s)U(T~s)L(T)F(sdsd

= s~WC )T + T~L ~~~~sd

= f;(WL(T)F (T) +- Ur.)L((TLT)F(dT~

Combining the L 2-continuity of XF(O) In the definition of !1(!E )-process and

the Jensen Inequality such that E[IXF(O)I2+aJ K EEIXF(O) 12Ja. we get that

E( IXF(O)1 2+aJ Is continuous in TE.. Hence there exist positive Integers

P2 Po.q2 and m2such that

(2.6) ECIXF(O) 12+a] I C 1 1 ~ 2 a

Therefore the Kolmogorov criterion for continuity, together with the

inequalities (2.1) In Lemmra 1 and (2.6). yields the continuity of

XU(T.O)L(r)F(O) In T. Thus we get

(2.7) f;XSj(T.)L(T)F(O~d XU(t.O)F(O) - XF(O).

The equalities (2.5) and (2.7) show that XF(t) is a solution of the equation

(1.1).

SFollowing H. Komratsu [12]. we now prove the uniqueness of 2cnius

solutions for the equation (1.1). Let Y,(t.F) and Y2(tF) be the two

continuous st(SE' -process solutions for the equation (1.1). First we remark by

* the Baire category theorem that for each T > 0, we have some natural numiber

X W,"I .



p, 3 O~3 and m3such that

2
(2.8) max sup E[Yi(t.F) J 12 (T)IIFII q

i=1,2 O~t T 333

Define v(t.F) = Y1 (t.F) - Y2(t.F). Then for any a > 0. we will prove

d .E~v(t.U(a.t)F) 2 0 for t 6 (O.aJ. The inequality (2.8) and the strong

continuity of U(t,s), ((2) In Lemmra 1). yield

ECIv(sU(as)F) 2 v(t.U(a.t)F) 
2
1

s- t

C3(TF) C~(s.U(a.s)F)-v(t.U(a.t)F))2 1/2.stC(aJ 0,.
C 13(T.F F-[v s- tIfI stE(a C[,.

The Inequality (2.8) and the strong continuity of L(t) and U(t.s) imply that

(2.9) lrn ECI~Ua))-vtUatF - v(t.L(t)U(a~t)F) jj=0
s-+t s-t

By the strong continuity of U(t.s). we get similarly

(2.10) lim E[ iv(s~rU(a.s) - UI~a.t)]F) -v(tFU(a.s) - U(a.t)IF)
s+t 5- t

-v(t.L(t)[U(a,s) - U(at)]F) j2] = 0.

Since L(t) generates the Kolmogorov evolution operator U(t.s). we have

Itm EElv(t.L(t)U(a.s)F) - v(t.L(t)U(a~t)F) 12] = 0
s-ft

lint EElv(t.L(t)U(a.t)F) + v(t. (a~s) -U(a.t) F) 12 ] = 0.
a-*t s- t

so that we get

(2.11) 11. Elv(tL()Ua)F) + v(tU(a.s)F) v(t.U(a.t)F)12, = 0.
8-+t s- t

From (2.9), (2.10) and (2.11). we get the desired equality claimed above.

% %
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Hence E[v(t.U(a.t)F)2J = constant. Then letting t -, 0. by (2.8) and the

definition of continuity of an $(IE.)-process in t. we have the constant = 0.

Taking the equalities E[v(t.U(a.t)F)
2] = E[(v(t.F) + v(t.[U(a.t) - U(a.a)]F))2)

and lir E[v(t.[U(a.t) - U(a.a)]F) J = 0. into account, we have E[v(a.F) 2 ] = 0
t--ta

for any a > 0. which implies v(aF) = 0 almost surely. Thus the proof is

completed.

3. Proof of Lemma 1.

As in [20]. [21]. we will treat the generation problem via the stochastic

method.

For any F in N. we recall the definition of U(ts):

(U(t.s)F)(x) = E[F(i s, (x))].

To examine that U(t.s) is the evolution operator stated in Lemma 1. we

will check some regularities and Integrabilitles for s.t (x). It is obvious

that If p P0 and x E V. 17s.t(x) C E'. so that for h C Ep4 .1 s(x+h) C E'.

where P5 = p V P4. Here a V b = max(a.b). Following Kunita (p. 219 of [13]).

1
we will show that fst(T) := rhs.t(x+Th) - qs (x)} has a continuous extension

at T = 0 for any s.t a.s. in E' . This can be proved by appealing to the
p5

Kolmogorov-Totoki criterion for continuity [25].

Lemma 2. For any T>O and any integer J 1. we have

ECllf s.t(T) - f .. (T')Il2 J C14(T.h){Is-s'I J + - tiljr-T'l).

0 3,3',t~t',TT' T.

First we will show the following inequality. Let A(r) be a well

measurable random linear operator from E to E' such that

POS

0 . Il ,--,S '5
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E(Jf A(r) I jdr] < co. Then we have

Lemma 3. For any Integer j ~1

E[I1ftA(r)d13(r)11 2J C, 5(J)E[(ft i A(r) j dr)~j.

Proof. Let (.) be the inner product In E' such that

(x.X) = 11A112  . Setting 0(x) = (xx)j and y(t) = ftA(r)dp(r) and applying
-PO -P -p0

the Ito formula. (Kuo (15]), for e(y(t)). we get

(3.1) E(I1y(t)II 2 j = I E~fttraceaD20yr)[~~Ar]r
-O 2 s -E0DGyr)C~ Ar)r

1 E t {22J(J-l)(y(r).A(r)h(O) )2  Iy(r) 112(J-2)
2 ifs -p0  -p0

+ 2JIA(r)h(O) 12 Ify(r)I112J1)})dr]

S(J+2j(j-l))E[1t I A(r) 12 11y(r)I11 2 J-1 drJ.
s 2 -p0

By Wol~der's inequality and the martingale inequality, the right hand side of

(3.1) Is dominated by

*1) (J+2j(j-l))E( sup I1y(r)1I2 ]J l'JEE(ftI A(r) I dr)~J"

pp

which completes the proof of Lemma 3.

Proof of Lemma 2. Now for the convenience of notations we will write

dt 0 d 0 (t). dP(t) = d131(t), A0 (t.x) = B(t~x). Al(t.x) = A(t.x). N**m=1i!*IIp

* and H l 12 Without loss of generality, we may assume

* j j I

L; q Z - W %~7
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0 S< s' < t < t' T. Then f~(T) - E (T') Is a sum of the following

terms:

(3.2) 2 fSI!DAr (.r'y))(fs (T))dy)d3 Cr).

where Cr (T.y) r s(x) + y(ns~ (x+rh) - ri s~(x)).

(3.3) 2 fs(8D ~ .s.r (.)Es~r (T))

-DAk( , tr (Tr.Y))(f 0 (r) )}dy)dIpk(r).

By Lemma 3 and the assumption (H2). the expectation of the 2j-th power of the

I1 1-p-norm of (3.2) Is dominated by

C 16 2 E[( : of;DAkcr Csr .Y) )E.r T))dy a kdr )J]
k

C C17 2 Is'-sl3 1E[fI, of s (T)II 2j dr).
k S sr -p5

Again using Lemma 3. assumption (H2) and the Gronwall lemma, we have

(3.4) E[II T t(x)-ins~ (Y) 11 2j C i c 1 x-yI 2 j . x.y C E;.

s.t s _ p5  -p5  P

which Implies

(3.5) Ef 1fsr()I2j drJ is Ifi 2j sj

Since the integrand In (3.3)

f; 4 2 A(.. D.~ (-'r ))(C) (sr () - C . (T)d

+ Jr; (fO2Ak~r,,1 s,s TT y)( r sTY C*'r(TY))dy1 )(E5 . r(T ))dy.

where ,s. (T.T.l = Cx.r (T + Y(srT. - Cs.r(TY the

mook-norm of the Integrand Is dominated by
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(3.6) Cs19 (llsr (T - Es'.r ( T p5  - qs.r(X) -p 5

+ I177s. r X+Th)  - TS.,r -x+r'h)lI- p 5
) lias, r(r -)l_p5

By Lemna 3 and (3.6), the expectation of the 2j-th power of 11-11 -norm of
-p5

(3.3) is dominated by

(r - . 2rI )dr
(3.7) C20{Jf.Etllfs'r(T) - fs'.r (T )II-p2j ]d

s r S r p5

+ ft . E[- 17s. 4jl 12 EIlf s*. r(T 'hI4 /d

+ ft .E[I s, (x + Th) - 17sa rX+T'h) 114pJ"11/2 E(l s r)'iIp 5 1/2dr)"

From the assumptions (Hi) and (H2), we get

*Ak(rT sr(X)) - Akr ,s,.r('))k K C2111'Ts.r(x) - 1T's.r(x')tlp 5

and taking the expectations of the 2n-th power of both sides of 11-II -norm of
-P5

the following inequality;

1177. t ( x )  - Tjs'. t'(x')Ill- 5 i

III:Ak( r. 'Sor())d/k(r)ll-P
5

+ III ft4Ak(r.'ij.r(X))d k(r)lp

+ lII J.{Ak(r.'1 (x)" - Ak(r.ns'. (X)))d k(r)ll
k he k( 3, r 5  '

we have, by Lemma 3, similarly
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fl t 2n

C (T){jt-t'In. 's-sij + I ECriqIX 1 n d)

Noticing that i~s (x) = i .r(1,.s .(x)) and 77s .r(*) is Independent of 77

and using (3.4). we get

E[I~ 17 r(x) - r~s * (x-)11 2n rE. E(flrj (y)--i'j (X'II ] 2n P(ris S.(x),Edy)

_P5-p 5  sPs

IV C23 -Xii 2n, .(x) C xiIy
-P5

-P5

where P(-) denotes the fundamental probability measure associated with P3(t).

Hence we obtain

(.)E[1177 t(x) -q.t(x*i2,I)Itt nlssl~lxx12
(38 - _P5,t g C25(T)

Combining (3.2). (3.3). (3.4). (3.5). (3.7) and (3.8). we have 5

2jE[I1ft (T) - E5 .t@(r') 3P

g C2(T)flhtI 2 j {It-t' IJ + Is-a' IJ + IT r' 2J 11hI 2 j

_P5  -P5

This completes the proof of Lemma~ 2.

Let tr tend toO,. we have for each x C E'.
p

(3.9) Dq (x)(h) =h + I sIt Dkr())dpk(r).0

'na~rx))(Ds~rU'

k'

0 -4 N -W N N 0%0
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For the higher order differentiations, the formula similar to (3.9) can be

proved inductively, together with the following lemma.

Lens, 4. Suppose that a natural number q pO and any T > 0. Then for

0 s,ts*,t* T, a natural number J and x.x'.hi C E, i=1.2,**,.n. we have

• ..
s~tn - 27 1 -q 2 -q n -q

(3.11) E[IIDns (x)(hlh2---.h ) - D.s.t.x .(hh 2. h)112j
s.t n 2- ni -q

9 C2(T){It-t' IJ + Is-s' I + Ix- x',i2 ) 1h 112 JI1h f,2 j..--1h 11 2j

-q I-q 2 -q n -q

Proof. First we will show (3.10) for the case n=1. By the assumptions

(HI) and (H2). we get

0DAk~r, Tl, rX))(Nsrx) (h) ) k g C29lDTsreX) (h)I11 .

so that taking the expectations of 2J-th powers of IIII norms of both sides of
-q

(3.9) and using Lenma 3. we get

E[llD7s,(x)C(h)112jl  C 1 2j + ft E2llD77rC(h)ll2j]dr)

s ~-q -q s r~x -q

and the Cronwall inequality gives (3.10) for the case where n=1. For n 2. we

will prove the inequality by mathematical induction. For hlh 2 .**- . hn e Es,
n q

(D ,, (x))(hh.-.,h) = J.stn(Ak(rns,r(X))(hlh2,,,,,hn)dPk(r).

Since

(3.12) DP(Akr. 1s,.(x)) )(hl.h 2 .***.h )

= DAk(rWs.r(x))(D sr(X)hlih2,"',hn))

+ finite sum of terms of the type

".. . . ... -........ . -. .... \v - -...*9. ~ ~ ~ ~ -M % N.'~ ~~~
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2 n

nn

(m)

1 2n21 2 n

where 2 m n, n I  n2 --- +n = n and 0 n1  n-I. so that using the

inductive assumption, we get (3.10) by the same argument as before.

Before proceeding to the proof of (3.11). we note that for h C E.

IIDr t(x)(h)-Dns' t (x')(h)ll is dominated by
sotS t -qo

(3.13) 2 ll 'DCAkr 's, reX))) )h)dpk ( r)ll-q
k

+ I lstDCAk(r. h7.r()))Chdpk(r ,h
k D r (x -q

+I IIJ!.{D(Ak(ri 9  (x)(h) - D(kris. )()rp~~l

Now, by the assumptions (HI) and (H2). we have

(3.14) iD(Ak.r.s r()))(h)-DAk(r.7s,. r(x')))(h))ik

K O(DAk(r. )s-r(X)-DAk(r.s , r(x))}Ds Cx)(h))Ek

+ *DAk(r.ns . r(x'))(Dns.r(x)(h)-Ds, r(X' )(h)) k.

K C3z ( ) (1% . r (x)-s .r ( x '  - q ID s . r ( x ()ll)q-

+ IID9r (x)(h)-Drj. (x')(h)llq}.

Hence from (3.8). (3.13) and (3.14) we have

EClID.. t(x)(h)-Dq, .t'(x')(h) 1 2 j
So -

r..
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K C32 (T){(it-t I
j + Is-s' IJ+Ilx-xil12 j)lhI2 j

-q -q

+ fs'.E[llDqst(x) (h)-Drs .r(x ') (h)ll 2j jd r ),

which gives (3.11) by the Gronwall lemma for the case n=1. By (3.12) and the

estimation of 11Dnls t(x)(hl.h2.-.-.*n-D n s..t.(x)(hl.h2 .--.. hnIllq similar to

that in (3.13). mathematical induction and the Cronwall lemma yield the proof

of (3.11) for n 2.

For the proof of the generation problem of L(t) we proceed as follows. By

I the assumptions (HI) and (H2). (3.8) and (3.10) of Lemma 4. we may exchange the

order of the differentiation and the integration. Then by the Ito formula

[15]. we have the pointwise Kolmogorov forward and backward equations as in the

finite dimensional case (Theorem 1 (page 73) of [7]):

d
-" (U(t.s)F)(x) = (U(t.s)L(t)F)(x)

d
d- (U(t.s)F)(x) = -(L(s)U(t.s)F)(x).

,%.

Let p O. q 0 and n 0 be integers and x C E'. Since
p

Dn(F(fs't(x)))(h (q) hq) (q). - 4. (q)) is a finite sum of terms of the type
1 2n

n n'," n~I  ,h(q h(q) .h(q)I nrs
I =mF(Ts.t(x))(D 1)s.t(x). h(I)) (I)'"'3() vit (x )

1 "2 n,

S(q) (q) - (q) (q h(q) h(q)

), ,° st (), °(), M
1. l 2 n2 1 s2n2 m

" nI + n2 +*'"+ nm= n.

7M

Sso that from the nuclearty of E and (3.10). we have an integer

*q' > )ax'p.Po q) such that
mm

,., . ,.0 - "'' . . " #- .. %
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(31)1hq) 112q <

J=1 .1 -q'

and

(3.16) 11F E[e D - (x) ( ) h,
q .q n s,t j (1 11 1

. () )[2  11 FI 2 n2t(x) (h(q s)l' h(q)s. () 2, 1 2

in i J2n 2

.s.t i (M)' j(m)" -J h(m) -q
1 J2 in a

31q .q *n I, -q -q n -q.

Here we will prove

Lemma 5. For f.ny a > 0 and T > 0. there exists a constant C34 = C3 4 (a.T)

such that

sup E[e st )' C34ea ll -l q  "

O~s. tKT

tProof. By (Hi). l s ~ ll q l l~ , C 5+l "A r ~ C ) d3 r l ~ .

Following [8], it is enough to prove E[exp(ll- aA(rls.rCx))dp(r)ll -q')] K C36"

Setting ys.t(x) = f.faA(r.rls.r(x))dg(r). by the Ito formula and the assumption

(Hi). we get for any integer m 2.

(3.17) E[IVyst(x)llm.) K E[(I+Ily (x)11,2 )m/2J
t ql rs.t -q )

K E[1 + It 2

8 422( '+ys~r( -q as~r

Z%
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S 2  2 2( (x).A(r.j (x))h(O )  , )Idr]
sr -q (ys~r s,r I -q

m22 t 2 --

1+ 2(') a C37TsE[(l+llYs.rSs)I-q,) ]dr.

where C = sup I A(t.x)12 and jxl -- (x.x) , If we use (3.17)
xCE' 2 q"

recursively, the rest is similar to the argument in [8]. which completes the

proof.

Therefore (3.15). (3.16) and Lem.a 5 yield

IlU~tps)Fllp~q.n K C(T)IIFII' .q' .n . t.s E [O.T].

which implies that U(t.s) is a continuous linear operator from ME. into itself.

In the same way as in [21]. If we prove the strong continuity of U(t.s)F

in (t.s), the pointwise Kolmogorov forward and backward equations imply that

L(t) generates the evolution operator U(t.s). Since IIU(t.s) U(t's')Fll2j,
p.q.n

is dominated by a finite sum of terms of the type

sup e 2j1x1-P ()G I..(1) ECIDNmF s.t (x))(D n7 s.t xW

p 1 2 M

j(m" Ej (m) .iml

.... 5tx(h?~~. h~'q).**.
(h(q) h(q) h(q)D s hq) h (q) 2 hq, (1). ,(1).9 0 . (1), s tc , (2), 1(2)1' * 1 ( ), •

41 2 n1  1 2

22M ()  (q)(q
D t(x)(h( h q  h.. hj D ....* (m )  S .t tJ1 J2 in

M
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h(q) h(q) n h(qn 2.. h(q (q )

t h~q) ). D (V( s..,, ) h --.

1 (7) *.t h (2)' (2. (2)'

(M)( (m)) (m)
1 2 nJl 2 In

so that by (3.8). Lemmas 4 and 5 and the nuclearity of E, we have

IIU(t.s)F - U(t'.s)Fll n  C3911F I.q nJ+Iss'

p.q.n q F *n. l(1It-t'1j

This completes the proof of Lemma 1.

S4. Ceneration of the Kolmogorov Evolution Operator

In this Section. we will discuss assumption (14). Let K be a separable

Hilbert space. We call a K-valued functional

G(x) = g(<x.l>.(x.f2>.,,-.<X. n>), f1.f 2 .***.n C E. a smooth functional if

g(x): 9P -i K is a C-function. Further we call C(x) a bounded smooth

functional If g(x) itself and all the derivatives of g(x) are bounded. The

coefficients A(t.x) and B(t.x) are said to be approximated by bounded smooth

functionals on V if for any integers, p P0. q 0 and n 0 0. there exist

sequences of bounded smooth functionals

AM(t.x) = am(t,<x.El>.<x' 2),---,<xk >)
m

and

BM x = b(t.(x.El>.(x.E2>'.*e.x.fk >)

such that the following conditions are satisfied:

(4.1) Am(t.x) and B m(t.x) satisfy the conditions (HI). (H2) and (H3).

(4.2) For any T > 0.

! .9
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lm sup IA(t~xYAm(t~x)1 2 = 0.
p

0 t T

lim sup IIB(t.x)-B m(t.x)I~p = 0.
M-OC xCE m

p
0 t T

urn sup IID k A~ -Dk A(t . 1I(q) = 0 k=l.2,,-n.
m-(t x)(.x) H.S.

p
0 t T

urn sup IDkB(t,x)-DkB (tx)I'~q4  = 0, k=l.2,.'.rx.

rn-a xE mi H.S.-
p

0 t T

Proposition 2. Suppose that the coefficients A(t.x) and B(t,x) are

0approximated by bounded smooth functionals on E'. Then if F e "E

U(t,s)F(x) = E[F(irs~(x))] 6-E.

Proof. It is convenient to use the notation A0 (t.x) = B(t~x) and

Al(t.x) = A(t~x). For any integers p 0, q 0 and n 0. we choose an

integer q' > max~p.p0 .q} such that

*W

(4.3) .1 11h(q)fl2

_~ j -q

since E is a nuclear Fr~chet space. Then by the assumptions, for any 0 < 6 < 1

0 ~and Ak(t.x). k_-0., there exist bounded smooth functionals

Ak(t.x) = ak(t. <xCl>,<xC 2>,....<x.f m >). k=0O.l such that

*~ e
(4.4) +1 su11)At x-%HS

-~ e=0 ,cCE',
q

0 t T

*For sufficiently large N, we put

% P
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zN()=x+ If tl
z~~~(x) = r k(tl~x+yfs Ak(t 2 .ee
atk Sk

.x!tNl1

Setting

kk k n

n=l,2,..*,N, where t0 =t. by Lemma. 3. we have for any x C E', 0 s~t T and
0p

any integer j 1 1.

2 E t r s.tx- -q -

N 2AIk[1-k 1 (k) (xt 2 j.

k=2 t( z

+ (2
2i l)NE~II(N) N 2N.

K (2 j) 262RT + 1 (2 jl ) 2 kMj(kl1)62iRkTk/k!
k=2

+ 2-1 2N N 22 M2j ?NTNMN

K 52jexcp(2 2 j 1)R(MVl )2 jT) + (22-)NR ~~~NM

where N =max max sup 11D% txl(q') and R = C j)TjL' + TI'-'. Hence
k O~e n+1 Ax(t'x)H.S. 15(

q
0 c T

*for any a > 0. If we take sufficiently small 8 and large N. we have

(4.6) sup EEIUn () N ()1 2 J. < a.

Nezwe will verify by mathematical Induction that for any Integer
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1 k n and any a > 0. there exists an integer N(k.e) such that if

N N(k.&).

~t, I 11 2 1k

D ~ I 1 2  k -q

-: For any a' > 0. (4.5) gives that if we take sufficiently sma.ll 6 and large

n(e'), then for any N n(a*)

N 4j 1/2
(4.8) sup E[II7 s(x) - z s.t(x)II -J < e-.

Here we need the following lemma for later use. In a manner similar to

*that In the proofs of (3.10) and Lemma 5. we get

Lemma 6. For any integers q p0. .1 j 1. n I 1 and any T > 0. we have

(4.9) sup E[ II zN (x)(hh2o* )1j

O~s. t T s n -

K C4(T)IlhI 2 jIlhJ2 *'*..I1hI1 2 J. x.hi. I = 1.2,---.n C E',40 -q -q n-q q

For any a > 0 and T > 0.

(4.10) sup E~e Zs t -q] 4e -

For anyfC E and any a>O0and T >O0 there exists C 2= C4(f.a.T) such that

*(4.11) sup max(E~exp(av/Ijr,.(x).PIl)J. E~exp(ar/I~z' t1 x.f I)))
0 s~tKT tst

KC4exp(aA41x. P1j).

Setting

6I

". .070 ,R
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.:t
= (q) +sjktN-i c))(hq)+ ti N-2 (q)

~i k' 1 kt's~t I Ik I DAk 2  s.t 2(X))(hI1

tn (q)

Z't:(x)(hi ()

(q jN-i (q) 1jt N-2 (q)
= h DA.Kt~ - (X))(h1 ~fD~t. (X))(h11 k skt'l 1 f1 k sDkt's 2 1

rn-1 - N-. q)dp~m)+.**+Ifs DA k(t.t (x))(Dri ()( -)~~l
k M Inm'r 1

and taking N mn + n(a'), we have by Lemma 3. (3.10) and (4.9),

+ ~ (q N (q))N (q)j 2

S~1 -q

+= ( 2
2J)k+ 2EEIN~x ( )N~)- (h -q)12

M-1~~ ( 2 J I k 2 l k N( )11 2 ]
+ I z(x)( (q))Yk+"(x)(

+ 22J-1 n +...l kinN~ (q)N_ ~, x( (q),2J.

+ (2 2J1) m+ IIZ M N(x)(h 1 ()-]zN (x)(h q)I .J

C,( (q)6J2J12R + &.(22J-1)3 1K2jRT

+ 1 ((2
2 )2 + 6 JkiIk

k-4b



28

" (22j-1 ) 2k+4 a. Rk1 2j(k+l))Tk+/(k.l)!

" (2 j2 2)2m+ 2 jmemN!iml ,-

g 4(62 + a' + (2 2Jl1)~~~ 2m iTYI/m!)

which gives (4.7) for k=1 if we take sufficiently small 6. e' and large m. We

assume (4.7) holds for integers 1 k e. e I.

Since

D+ (Ak(r s r X)))(h( ) h(q
) , ... h)(q )iT.rx) 11 12  110+ 1

DA(r. (x))(D (x)(h ( h (q). ° h(q))
= s.r s.r 1 12 1 

2
+1

+ finite sum of terms of the type

nl ( A.h(q) h(q) h (q)DUkr s.rX)V rs.rXt 1 (1), 1(1)'** ()'

D n ( )h() h(q) ....h(q) ..

srtX~t (2) 2)' (2)
"1 2n2

n
UDl (x )(h( ) h (q ) . h (, ) .) )
sr ~(u) j(U)u)

U

where

42 u Ke+l. nIV** U= e+l. (hJ(), 1=1.2.---.u) (h I) J=1.2....e+lj

ni I

and

et 2. ( (q)i h q .- . q

1 2
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t De+I (hq ) hdq ) I-..h)._I I D (Ak~r.nl.rCX))(" hl h.q )2•dOkr r

k 1 2k

so (4.7) for k ? 2 can be proved similarly.

Since F C , . for any 0 < e' < 1. we have a weighted Schwartz functional

F(x) = f(<x.'1>*<x.E2).***.,x.fm>) such that

n+ 1 - 1Il 'l~ k F x -( ))l q'

(4.12) - sup a -lD Fq')
k=O xCEH..S.

q

Then to prove Proposition 2, it is enough to show (U(t.s)F)(x) is approximated

by weighted Schwartz functionals in 11011(q). 0 k n. Since

DkFCr,,.VxD)(h ~).i4q) .... *h )) is a finite sum of terms of the type

12 ' ik
(4.13) h(q) h(q) .. h (i t(x))i

n1 2

1 1 (q) hq),

(h ()h (q) ) ).--. Uls (x( (q)' h(q)' h()))
(C2), (2),99 ) ( ). *'.D e) , "*h60 {(u

1 2 2 2 nu

where 0 K u k and n +n2+**-+n = k. so that setting
I N

(4.14) Jh(q) h(q) (q)Zs t(x))

iI 1 2  ik

UF, D n N ( q) (q) ... D) '2 N N x)

1 2n

(h (q) h (q) Ahq) )..D nuzN t h(q h(q) .h (q)

.) (2) '(u) J(U) (u)
•2 2 1 2 fu

NO -%.,

% %
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we see that (IIU(t.s)F-E[F(z .t(.))]p.)(q) Is dominated by a finite sum of terms

of the type

-211xAl
(4.15) C,5 sup e PE[ I (x))

S2'"1 12 ' " k

- J (zN (x))12 ]

II ' 1 21 "*hk

-2 11x A - 2 N7rs t

C6spe E~e 11 e)lD 17 (x (q)
xCE 1 1 2 1.. .)k1  

2

(h)' 1 J(1) -q (s2t) ' (2) '  (2) -q '

2 n1  1 2) n 2*01 .. hq (q, ()

*.lD uis.t~ith q) sh~ ....h q ) 11I -!

s (u) JCu)' 9(u) -q'
1 2 n "q

-211x11 a

xC(Eq *1 h, h"q)

-h(q hq) • 4 ( s.t(x)) 12]}.

Hence~~~ ~~ hro (31)(43)q41)an )em . weq av os tat n

11 1 2 " .hk

Lemmas 5 and 6 and (4o12) give

(4-16) sup e -Pu{E NID (z (x)),I(q') 2] 1/2. E ,D+1CN x

+ (Ij s,t (x)-ZN.t~x)))lI .') 2]l/2 C47(T) . 0 T 1. 0 s.t 9 T.

U

H.S.'

Hence from (3.10). (4.3). (4.16) and Lemma 5. we have constants C4. and C4.

Independent of a'. and for any a > 0. a natural number No such that (4.15) is
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dominated by

(4.17) 6/3 + C486 + i 2 i 1  01k=l 1 t(x) 1D 7s. t l X )

n
h (q) .. (q) ,,112 ...1D u  re7 x)(h~) h(q) .. h(q~) 12

) '(1) -q' S. t (u) h (U) °091 (u) -q'

2(l n q 1~ j 2 n
nI n 1

- 1. 1
+ I 11Dnz -(x)r) h(q) . (qD (r)r-1 3 .t~ J  1 ) (1 ), (1) ) ' s tt j  (r-)

1 2 n 1

h( q)  -h ( q )  2ll lD rs~(x)(h q) h ( q h "' ( q )  !

S)(r- (r j(rr)J2rin ii J2 in r

n rz N(q) (q) .. hq) 22 n r l  (q)

(q) (q) 2l.... nu ( q ) h(q) 2(U)

2 nr+ 1-2n u

Therefore noting (3.10). (4.6), (4.7), (4.9), (4.15), and (4.17) and taking

sufficiently small e'. 5 and large N. we obtain

sup• -PliiDk((U(t.s)F)(x))-Dk(E[(N. N(x))j)ll(q) < a.
x's .t 'H.S.

P

NN

The rest Is to prove that E[F(z ,(x))] is a weighted Schwartz functional. Of

course *(z ((x, 'N (x' 'm >,< (xC1> 
'( 2>

'"  "(x.C>)

Is a smooth functional. To prove g(x)*s~t(x) C ()9+m), by the Leibniz

formula, it is sufficient to examine the finiteness of

sup (+l 1)n(m) g()( ) *s.t(c)t. for any integers Or.k~n.

rX+0

"%" ,' %" " "'," " " "," " ". "/ "."","'-""-' " "" "' "" "" "." ." ." -" "" "," ." .""-""-"%" ' "- 'h," / "." "." ." ." "" "" "" " " " " "," ," -'.,,"".""." ,""."".9

-," ,.',',' ." " '-,,' ." ' -" " , °..'. '. *'- ,,w" ,,.." ,...',.e. ,,. ,...".,'..e ,,, , .. .- .-.. _. .- ._. _. _', '_ .. ,..,'.,,"- ,'.-. , ... .- .- -. '.-e. pp
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k ~ (q Nq .. (49qadth)By the expression (4.14) of D (F(z. (x)))( hh (49antes t 1 1 2 1k

fact that f(z) = h(x) p(z). z C 901 and i()g~z)i Cexq,(- II it is

enough to show the finiteness of1=

(4.18)~2 sup(1 + 2 2nm ___

(41) sp I + I (x~fI >> ) exp(- ,I Ix.!i >I i1.~I
i1j1 i=1 J=1

Eh" (N -(D) zN 2 1/2
x EC( (1) z (X)) p (x)))s .t s .t

where

Q ( x:(<x.fl >.(x.E2>.e-... >.(x.rl.xc 2 .. ex> +m}

h''() W (d lh(.) ,(v) ( d v.,( z e Up.

h()Z~ N (x)) =h(4) (<z N(x).Ei>. <Z N Wx). >.00..,Z N (x).E>)

and

%Q) (z(x)) = < s (x).f> < 9. (x)E>2 N ()E

Since Ih'~(') C,1exp( I Vj/x1il). (4.11) of Lemmra 6 yields that (4.18)
i=1

Is dominated by

(41)su( 2 2 n 1v 4 1/4
(4.19 sup I ( x.f > + I (x.C > ) exp(- -1 VlIx.C >I)E[(f~ (zb (x)))]

Q 1=1 J1=1 J=1

SC52 sup(1+ I (x'E I> +I )xC exp(- I vI<x.c >I)
Q 1=1 J=1 J=1

- (1+ 1 <zN (x) >2 11/4

(1+ 1 (xz J-

C~Ip~u(1+ 1IXf <X.C >) )flxp(- I -)I<x.f3 >I)a
Q 1=1 J=1 J=1

V N %
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xE-

(1+ <zN t(x).fl>2
)

where IIlln - sup (1+1I12) (r)l.

0 rgn

On the other hand, we can verify the following lemrma.

Lemma 7. For any CiE2 -- ,[ C E and any integer p 1, we have

E N N)2 p C54(T) m st 9 T..(l+= I <z s ' t(x ) .E > (1+ 1- <x. 2

1=1

Proof. Setting O(x) 1 and applying the Ito formula for

(1+ 1 <x. .>.
i=l

e(zt(x)). we get

I

(4.20) E m ,).>2)p = ( >2 )p
s1 z,t(x).f (1+ 1 <x.f >

i=i s1"1

[ m N 2] -
+ E -2p(1+ I < .r(x),i>2 -(Pl)(I <ZNr(X).i> (B(rz, (x)).>) drL lsi=1 s s~r J) l)d

2 (p+2 m 1N1fi1+ 2p(,+l)(,+ P zN (x.Iz. W2l-P+) <m~r~z (0 x2

S .r =1 s rI€ + <z N.rCX), 2> (PI) ( r = < zN -'Cx))h(0)' > 2))dr  ]

By the boundedness of Ak(t.x). (4.20) is dominated by

111- <~'rl)"I>2?P +li~ C55 < N rl)" 2 )p](+ 1 1P -j(+ (

.4 1=1i=

* SN
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which yields the proof of the lemma, together with the Gronwall lemma.

Using this lemma, we see that the right hand side of (4.18) is dominated

by

C5 6 11nIn sup (1+=I <x.I>2 + I <x.C >2 )nexp(- I -./'<xC> )
Q 11=1 .1=1

X m 1 2n<a*
(1+ 1 <X.E i> 2)n

i=1

Hence E[F(z Nt(x))] is a weighted Schwartz functional and the proof of

Proposition 2 is complete.

The following remark is immediate.

Remark. Under the assumptions of Proposition 2. (L(t)F)(x) C if F C

IE

S5. Theorem

Propositions 1 and 2. together with Remark 1. yield

Theorem. Suppose that the coefficients A(t.x) and B(t.x) satisfy the

conditions (HI)-(H3) and are approximated by bounded smooth functionals on E'.

Then L(t) generates the Kolmogorov evolution operator U(ts) from ME' into p

itself. Further under the same assumption on the initial value as in

Proposition 1. the continuous Vir .)-process solution of (1.1) is uniquely

given by

XF~t) = XU(tO)F(O) + WF(t) + fOtWL(s}Ut.s}F(S)ds.

As a direct application of our theorem, we give below another approach to

* %w V
:;_..- -. .-. ... ,.,.- , d, . d .. . .. . . , , .. •, ... , .. - .. ....... .,.,.., -.. ., .. . .- -. , ,-, ,
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the fluctuation problem In [4].

Exanple. lattice system of interacting diffusions

First we begin to explain the system that Deuschel considered in [4]. Let

id be the d-dimensional lattice, i=(il.i 2 '..i'1d) C Z'
1 and VP= (Z1) the

Schwartz space of rapidly decreasing sequences f=().metrized by the

countably many semi-norms:

l 2 1 (1+IiI) 2IEiI12.

The dual space W = V*(Zd) of V9 is the collection of all slowly increasing

sequences x = (xi) such that for some integer p 0,

11xUI2 P= I (liI)-2plx, 1
2 <

Let bi W. I a id. be a real valued infinitely ma~ny times 9"-Fr~chet
I p

differentiable mapping on W for every integer p 0 such that bI (x) =b(O X).

where b(x) is a real valued mapping on W' and e x = xi)

(Vi) We have some natural number p0 such that

(V2) For any integers n I land p 0.

S. 

H S

(V3) For any Integers p p0 . q Z 0 and ni 0. there exists a sequence of real

valued bounded smooth functionals bi )(x) such that

ii. sup ID bf(x) I)iiq H.S .
M- xeP*

p'

% opC r
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Let x(t) = (x i(t). I C Zd ) be an V'(Zd)-valued solution of the following

equation:

(5.1) x1 (t) = or, + Bi(t) + f~b1 (x(s))ds.

bi(x) = b(OIx). 01x = (xji).

where (B,(t)) are independent copies of the 1-dimensional standard Brownian

motion B(t). (a) are independent copies of the 1-dimensional random variable a

independent of B(t) and for any e > 0. E[exp(ell(a)Illpo )] < -. For a finite

lattice V C Zd . consider

Tv(t) = VI- 1/2 V 6 e0x(t)'

Now put

U (t),O> = <Tv(t),O> - E[<Tv(t),>] , -0 C (V').

Then it can be proved (see [18]. [22]) that Uv(t) becomes a strongly continuous

C0 (V')'-valued stochastic process. We will prove tightness for Uv(t) . V C Zd

following [5]. [19]. in C([O.a); Co(V')'). Let L0 be an operator defined by

(LDF)(x) trace 2F(x) + DF(x)(b(x)). F C .
0 ix2(zd) V.(Zd

4
where b(x) = (bi(x)).

By the conditions (Vl) and (V2). equation (5.1) is solved in Y*' , so that
PO

4 x(t) C P' . Then we have by the exponential integrability proved in the same
P0

way as in Lenuna 5.

E<Tv(t)> C57 -7 0,0"

ze
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Since CcO(Vf) is dense in 5.,zd ] , T (t) fs extended to a continuous

s(M,(Zd))-process. We denote the exten-ion by T ,v(t).

Let O(x) = *((x.El>, <x.E2 >,'.,<X,'n>), S(On). By the Ito formula.

we get

(5.2) <Tv(t).O> - <Tv(O).> = N.v t) J TLoV(s)ds.

where

M.v(t) = tvI-112  C1 0 -- *(<q 1x(s).1 1>. <eIx(s).E 2>.-*.eIx(s).En>)ieV J=l 9xj

Y i dB(s)).kd k

where fi= (k) k a Zd.

From the independence of Bi(t), i C V and the fact that x(t) C V' we

have for t C [O.T].

(5.3) E[EM,V(t) 4] C5,,,0i.i

Then MO.v(t) can be extended to a continuous $e(T )-process and has the
V.(Zd)

same regularity properties that the $ ,(Z
d ))-Wiener process has. Conditions

(Vl)-(V3) guarantee that L0 belongs to the class dealt with in the Theorem. We

use the same notation U(t.s) to represent the evolution operator generated by

LO. Thus the solution of (5.2) is given as follows:

<Tv(t). > = TU(t.O).v(O) + M.V(t) + 10.0

as in the proof of Proposition 1. Hence by (5.3) and the Kolmogorov test for a

real Wiener process, we get

E[l<Uv(t)Uv(s).0>14] g csglt-sl2

|1
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and further

E[I(Uv(t),0>12] C {II 2  11+ sup IU(t~s)OII1 2 3

W 00*

which proves the tightness in C([Ow);Co(CP')'). ([5], [18)). By the Skorokhod

theorem and the usual limiting argument, the limit process N(t) of Uvt)

satisfies the SDE

(5.4) cN(t)-N(O).O> = W,(t) + J; NL ,(s)ds.

where NF(t). F F !.,7d) is the extension of N(t) and WF(t) is a

vCw V )-Wiener process [8].

The uniqueness for solutions of the equation (5.4) discussed in Theorem

implies the identification of the distribution of the limit process, ([20].

[21]). which implies that Uv(t) converges to a Gaussian field in

S6. A fluctuation theorem for a system of interacting, spatially distributed

neurons.

A problem in neurophysiology that has received considerable attention in

recent years, is the stochastic behavior of the voltage potential of a

spatially distributed neuron [11.26]. When the spatial dimension of the

neuronal membrane is greater than one, the voltage potential is modeled as a

stochastic prccess taking values in the dual of some nuclear space such as the

space of Schwartz distributions $"'(R d). The SDE satisfied by the voltage

* potential Is best introduced via the following general model: Let H be a real

separable Hilbert space, in applications, usually H=L2(d.dp) where 9 is the

membrane of the spatially extended neuron (e.g. 9 = [Ob]. a d-dimensional

* rectangle or a compact Riemanian manifold with or without boundary, and p is

0%
-I % ~*~*~~ ~ ,~.'v ,,* P ~~ ~ d

DU
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the appropriate natural measure on X). Let Tt be a strongly continuous

semigroup on H generated by a closed, densely defined operator N such that

' 0 for E C Dom(1) where ('")H denotes the inner product of H. Assume

that some power of the resolvent of :1 is a Hilbert-Schmidt operator i.e.

(6.1) (xi - Is Hilbert-Schmidt for some rI > 0.

Then there Is a CONS { )J 1 in H such that -Xof = W i for any J l and

0!1021 ..- - Set

E = H; I (l.+j)2r(2<j)2 ( * for any r 0).
j=1

Define the inner product on E.

(UC) r = (1+x )2( '$J)H(C'$J)H

and Er as the E1- r -completEon of E. (llfll 2 = (ff) ) and E' as the dual of the

Hilbert space E * For ros. E C E and E0 = H. Condition (6.1) implies that

the canonical injection Ep -# Er is Hilbert-Schmidt if p > r+r . Hence E is

nucelar.

Since I generates Tt on H. we have for C E and t > 0.

0 -tX
T = e ( lol.

The following properties of T can be easily verified:

(a) TtE C E;

(b) The restriction of Tt to E is an E-continuous semigroup;

(c) t -+ Ttf is continuous for every f C E;

(d) The restriction of .1 on E maps E Into E and is the generator of the

R
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semigroup Tt on E;

(e) For for any fC E and t > O.

IIT t Ell r II I1r

The voltage potential is then derived as the solution of an E'-valued SDE

(6.2) dX(t) = dP(t) + :'X(t)dt

where T is the adjoint of % on E and P(t) is an E'-valued Wiener process with

E[<(1(t).f> < (s),r>] = (t A s)Q(f.). Q being an E-continuous quadratic form.

Let us now define

<V(t)x,> = <x.Ttf> Vx C E'. f C E.

Then, using property (e) above we have

IIV(t)xI sup e<x.Tth>1 K lxll sup IITtfl1r K Ilxll
IIVlt rllI IIlllr1l r r

and so

(6.3) sup IIV(t)xl r lxllO~t T r -r

(6.3) is a special case of condition (V12) below, which is thus satisfied for

the class of spatially extended neurons whose voltage potentials are modeled by

2(6.2). For specific examples of L (1,dp) and the semigroup T t which describes

the deterministic part of the behavior of the neuron, see [11].

We now come to the question of interacting assemblies of a very large

number of neurons. This appears to be a very important problem of

physiological interest since such large systems are involved In the fun:oning

of the central nervous system. The difficulty consists in discovering the

precise nature of the interaction in a mathematical form. In this section we

consider an interaction similar to the mean-field interaction in particle

N N.
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diffusions. Another, possibly more realistic interaction known in the

physiological literature as "parallel fiber interaction" will be investigated

In our future work.

Let b(x.y) be a mapping from E'xE' to some V such that b(o..) is

infinitely many V-Fr6chet differentiable for every integer p O and with all
p

derivatives bounded;

km
(VIl) sup 1ID )M b(x yI ( p )  <

x.yCE x y H.S.

for any integers k,m and p 0. Here D and D denote the Fr6chet derivatives

with respect to variables x and y. The i-th component Xtn)(t) of the n-system

of diffusions is obeyed by the following stochastic differential equation:

6.4) dXn)() = 01(t) + {z:(t)X n)(t) _ , b X ( Xd,

IInJ=l .1
i=l .2,-o.n,.

where(pt(t)) are Independent copies of an E'-valued Wiener process J3(t).

Suppose that 1(t) generates the strongly continuous contraction evolution

operator V(ts) from V to itself such that for any integer p and any T>O.

there exists some integer n(p.T) p satisfying

(V12) sup IIV(t ,scxllJncp t) JlxII.T P

Without loss of generality, we may assume n(p.T) n(q.T) If p q. Then (6.4)

is equivalent to

X~)t ~.~ ttn (Xn)(s).x~n)(s)))d".

(6.5) X nl(t) = V(t.Oyas+JOV(t.s)dP3(s+J'; V(t.s)(1 ) bX )ds.

We assume the initial value a to be an independent copy of a such that

"U 1 0O~~ -o le Pfr -1 V . r f f C
% *.
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E[exp(,aloll p7) ] < o for every a > 0 and some natural number p.

Since Q(E.C). is a continuous quadratic form on E. there exists an integer

r such that

Q(Er) = (Q1/2 Q1/2r)

where Qr is a self-adjoint operator on E r . Then clearly. P(t) C E' for some

integer P8 > r.

The solution of (6.5) until time T is easily obtained by the usual method

of successive approxinations in En where
n(p9,T)' whee9 P6 V P7V S

For the finite measure v(dx) on E', set b[x.v] = fE.b(x,y)v(dy), where the

integral is the Bochner integral on E' and consider

(6.6) dX,(t) = dPI(t) + {E(t)X (t) + b[X,(t).u]}dt.

u(t.dx) = the distribution of Xi(t).

Then according to the following lenm, the empirical distribution

n
'1 converges to u(t~dx) In probability in the usual weak convergence r

n J= X () (t)

of measures, where 6 is the Dirac measure at x in E'.X

Lem a 8. For any T > 0 and integer J 1.

E[llx(ml(t) - X,(tlll2 j ] C6(T)/mj. O~tKT.
I i -n(61 T) 61

Proof. Put no = n(P6 .T). Then the condition (VII) yields

Ilb(X~m)(t),X~m)(t)) -b(Xi(t). x~m)(t))ll_ 6 "

I i IP 6

K sup 11D b(X.yllI (no)1X~()t
X.Vy"E', _ H.S I (t |)-

% %
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C6 2 11Xm)(t) - X1 (t)ln 0

and
lib(X ( t ),X~ m) (t) ) - b(X i ( t ),X (t) )ll_p C631X~m) ( t) X X( t )lln O .

so that we have

(6.7) E[IIX(m)(t) - Xi(t) j

J'Em 2js. m~)

K C64(T) E[llV(t.s){1  I b(X()(s) X(m)(s))- b[Xi s).u)}t ]ds
J-1 0n

SC65(T) J{ECII X m)(s) - X (s)II2 j ] + I- Im E[IIX(m)(s)-X (5)11 2j
f; -n m a -no

J-1m
E 2j+ {b(X 1(s).X (s)) b[X(s)u)])Il ])ds.
J+1 -p6

Noticing the independence of Xi(t). i=l.2.---.m and the condition (VI). we
I(

have

(6.8) E [II 1 =b(XI(s). , (s))-bCXi(s) .u]}12 P6 C66(T)/m .
J1=1

Therefore Gronwall's inequality, together with (6.7) and (6.8). implies the

assertion of Lemma 8.

Now we proceed to the discussion of the fluctuation problem. We are able
an to consider U n(t) = (n inl x~(nivlte

to c-i - u(t.dx)) as a (E')'-valued continuous
J=i X~n)(t)-

stochastic process [18]. [22]. To check the tightness of U n(t) in C([O.-);

CO(E')') of all continuous mappings from 0,.=) into C;(E')'. it is enough to

verify the Kolmogorov tightness criterion for (Un(t).0>. 0 C C(E'). where

( , > denotes the canonical bilinear form on CO(E')' x CO(E'). [5]. [191.

I

We have the following exponential integrability.

J V.I

-------
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Lemma 9. For any a>0. T>O and any integer p n(p9 .T). there exists a

constant C6 7 - C6 7 (a.T.p) such that

ajn) (t)1l1p all~t)ll1p

sup EE I x p V E[e p 7"
0 t T

Proof. Set no=n(p9 .T). Assumptions (VIM) and (V12) give

max{IIX~n)(t)II. I1I~it)In 0  1 t1-~~ IIf~(t~s)dBI (s)It

and hence the lemma can be proved in the same way as Lemma 5.

Once we know Lemmas 8 and 9. we can check the moment condition;

(6.9) E[I< (nt)-U (s).0>143 K c69(,1 jt-sj 2 . .:.t
(69)n n

(see [8]). Similarly we have

(6.10) sup E[(U (t).0>2 ] C70(T) 2II 2

OtKT n n(Q TII 0 I~n( 9 T(.l'

Then a subsequence of U (t) converges to U(t) in C([O.-); CO(E')'). Further

(6.9) and (6.10) guarantee that Un(t) and U(t) can be extended to continuous

(®E')-processes and so we denote the extensions by (Un)F(t) and UF(t),

F C ME.. respectively.

For any F C ME" define
QII2 N x ^I/2.0'

(K(t)F)(x) = traceE D2F(x)o[ r ) r + SFx)(b[x.u] + %(t)x)

+ JEDF(Y)(b(y.x))u(t.dy)

and

WF(t) =UF(t) -UF(O) -t JKF(s)ds.'

0 K~s0
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where trace DF(x) 1 (Ql _)* X(Q 2) J D2F(x)((Ql/2)"h(r) '  I/2)*h(r)
E r[r r J r

and * means the adjoint operator with respect to the dual pair on E'xE.

By following the argument of [8] word by word, we have the proof that

WF(t) is a continuous e(9E.)-Wiener process. Thus any limit process of

convergent subsequences of U n(t) satisfies the weak SDE of type (1.1).

Now we impose a rather technical condition on b(xy).

(V13) For any - > 0 and any integers p.q.n 0. there exists a Cb-function

b(z.V) of Um' to Ell such that
p6

sup II Du DCb(x.y)-b(<x.f >, <x. 2 > .... mx>.
xcE' xP

<y-C l>. <y.f'2>..--.<y.C,.,>)],I. . < a..

0 j + v 9 n, Ei' C a E. i=1.2.-.*.m and .J=1,2,...m.

Here Cb-function means b({.yt) itself and all the derivatives are bounded.

We set

(A(t)F)(x) = 1-traceE D2F(x) ) [(r/)w (Q+ DF(x)(b[x,u] + X(t)x)
r

and
(J(t)F)(x) = IE.DF(Y)(b(y.x))u(t.dy).

Though N(t)x is not bounded, from a part of the proof of Proposition 2 and the

assumptions (VIl) and (V13). we can show

A(t}! E , C ME. and J(t)ME , C ZE ,

4Since

11, (x) : V(t.s)x + fsV(t.r)d(r) + .ftV(t.r)b[ils(X)udr.

choosing q' > n(q".T) such that q" > max(p,pg,q} and I h()ll2 ,. < m in the
J=l -q

proofs of Propositions I and 2 and recalling the condition (V12). we conclude

p.
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that Lemma 5 holds if q' In the right hand side is replace: by q" and hence.

together with (VII) and (V13). we obtain that A(t) generates the Kolmogorov

evolution operator from 9E into itself similarly. Further since J(t)

satisfies the condition of Proposition 2 in [21] and the proof of Proposition 2

in [p] is valid for any Fr~chet space. K(t) = A(t)+J(t) generates the

Kolmogorov evolution operator U(t.s) from ME, Into itself. Since the Theorem

gives the identification of the distributions of the limit processes U(t). we

obtain the conclusion that under the assumptions (VII) - (VM3) and the

exponential Integrability of a. U n(t) converges to a Gaussian field governed by

the weak SDE of type (1.1) in C([O.w); C(E')'). namely.

dXF(t) = dWF(t) + XK(t)F(t)dt.

where WF(t) is an g(IE.)-Wiener process with

EWtWsJ=tAs 1/2)hrDCX(1/*()
E[W F (Q C)(s)] (.r.f DF(x)((Q2 )Q r2) h(r))u(T.dx ))dTE'j=r r j

and XF(O) is a Gaussian random variable with

ECXF(O)XG(O)] = E[F(a)C(a)J - E[F(o)]E(G(o)]. F.G C SE,.
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